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I.  Phyr.: Condens. Matter 7 (1995) 231-253. Printed in the UK 

Calculation of the complementary variational modified 
bounds on the phonon thermal conductivity 

I F I Mikhail and N E Hassanen 
Depwment of Mathematics. Faculty of Science, Ain Shams University. Cairo. Egypt 

Rscaived 29 April 1994, in final form 30 August 1994 

Abstract. The complemenwry variational principle is used to derive suitable mpmssions for 
. the lint modified bounds on the phonon thermal conductivity. The var ia t io~l  vial function is 

taken to depend on a series of variational p m e t e l s .  It is shown that the relations needed to 
select one decomposition of the collision operator in preference to the others are independent 
of the number of varintionol parameters The convergence of the method is investigated both 
analytically and numericnlly when the number of varintiona! parameters is increased. All types 
of phonon interactions me considered and the results agree quantitatively with the experimental 
data for Ge and LiF aver n wide tempemure mnp. 

1. Introduction 

The ordinary and complementary variational principles have been used frequently in solving 
the linearized phonon Boltzmann equation. The ordinary variational principle determines 
only a lower bound on the phonon thermal conductivity [I-51. The complementary 
variational principle has the advantage that it determines a series of modified lower bounds 
as well as a series of upper bounds [6-12]. Both series converge to the exact value of the 
phonon thermal conductivity. 

Most of the calculations of the ordinary lower bound and all the calculations of the 
complementary modified bounds have been performed by using a variational trial function 
that depends on one variational parameter and is proportional to the component of the phonon 
wavevector IC in the direction of the applied temperature gradient. This form of the trial 
function gives reasonable results only when three-phonon normal processes dominate the 
phonon scattering mechanism. Hamilton and Pwot t  [3] used a more general trial function 
for the calculation of the ordinary lower bound. Their function depends on a series of 
variational parameters and gives reasonable results over a wide temperature range when all 
types of phonon interactions are taken into consideration. 

The aim of the present work is to calculate the complementary first modified lower 
and upper bounds by using a trial function of the type used in [3]. The first modified 
lower bound gives higher values than those obtained from the ordinary lower bound and is 
thus a better approximation for the phonon thermal conductivity. Also, the results of the 
complementary variational principle are expected to converge much faster than the results 
of the ordinary principle when the number of variational parameters increases. 

The complementary variational principle requires that the phonon collision operator 
should be decomposed into two operators that are linear, symmetric and either positive or 
negative semidefinite and such that at least one of them possesses an inverse. The best way 
of decomposing the collision operator for both the sequences of lower and upper bounds 
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is explored in the present work by using quite a general variational function, which can be 
expanded in terms of the elements of a general basis with the coefficients of expansion as 
the variational parameters. The treatment shows that the relations obtained in [12] using 
a variational function that depends on one variational parameter will remain valid in this 
general case. The convergence of the method when the number of variational parameters 
increases is proved analytically by using this general trial function. It has been shown 
that the first modified lower bound increases monotonically as the number of variational 
parameters is increased, while the first modified upper bound decreases. This indicates that 
both bounds approach the exact value. The analysis is also valid for the ordinary lower 
bound. To the best of our knowledge this seems to be the first rigorous attempt to study 
analytically the convergence due to the increase of the number of variational parameters. 

For the rest of the calculations the same variational trial function as used in [3] has been 
utilized. The elements of the basis of the expansion are accordingly taken as powers of k 
multiplied by the cosine of the angle between k and the temperature gradient. Also, the 
isotropic model of Hamilton and Parrott 13,131 is utilized to deal with Umklapp processes. 
The reciprocal lattice vector involved in the Umklapp processes for which the phonon under 
consideration is created (or destroyed) and two other phonons are destroyed (or created) 
is taken in the form suggested by Mikhail and Madkour [14], which seems to be more 
reasonable than the corresponding form used in earlier treatments for the calculation of 
modified bounds [9, IO]. We have further used the correct areas and limits of the integrals 
given in [I41 for the normal and Umklapp processes of this type of interaction. The 
general expressions for the tensors that determine the strength of all types of three-phonon 
interactions are also utilized instead of the simple forms used in previous work. All types of 
phonon interactions are included and the numerical calculations are performed over a wide 
temperature range. The convergence of the method has further been confirmed numerically. 
The present modifications have considerably improved the results of the first modified 
lower bound, which showed a good quantitative agreement with the experimental data of 
germanium (Ge) and lithium fluoride (LiF). The modified upper bound was not considered 
in this part of the paper for reasons discussed in section 4. 

The present work is arranged in the following way. In section 2 the general expressions 
for the sequences of lower and upper bounds are given. The first modified lower and 
upper bounds are considered in section 3 by using a general variational trial function. The 
quantities needed for the calculation of the first modified lower bound by using a power- 
series trial function are dealt with in section 4 when normal and Umklapp processes occur 
alone. Section S is devoted to considering the effect of other types of phonon interactions. 
The details of the numerical calculations and the results of the experimental applications 
are discussed in section 6. Finally the expressions for some basic coefficients are given in 
an appendix. 
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2. Basic relations 

The linearized phonon Boltzmann equation takes the form [IS] 

X = @ 4  

x = (X”) 4 = [4”] v = (U, k) 

where U and k are the phonon polarization and wavevector. The left-hand side of 
equation (IQ) results from the drift motion of the phonons. In the presence of a temperature 
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gradient VT, X, takes the form 

Xu = -U>, . VTguE,/kBT2 E, = A @ ,  (2) 

where ks is the Boltzmann const.int. T is the temperature and U,, w, and E,  are the phonon 
group velocity, angular frequency and energy. The right-hand side of equation (la) is the 
collision term, which represents all types of collisions that phonons undergo in dielectric 
materials. is a measure of the small deviation of the phonon distribution N ,  from the 
Bose-Einstein~ equilibrium distribution and is defined by 

Nu = Isw + g.4, g, = Nd1 + Isv). (3) 

Also, d is a linear operator, the specific form of which is given in sections 4 and 5 for the 
different types of phonon interactions. It is readily shown that fi is, in general, symmetric 
and positive semidefinite with respect to the inner product 

where + and 0 are any two elements of the Hilbert space of all functions of U. Also d 
can be expressed for all types of interactions and any + in the form 

Moreover, in the present work only the acoustic polarization branches will be considered, 
dispersion will be neglected, the medium will be assumed to be isotropic and the elastic 
continuum model will be utilized. Accordingly 

where A’ is a unit vector in the direction of A, t and e refer to transverse and longitudinal 
branches, p is the equilibrium mass density, and A and p are the Lam6 constants. 

Different methods are adopted to solve equation (I). The variational method has the 
advantage that one does not need the exact solution. A variational trial function + that 
depends on some variational parameters will be assumed as a solution. The values of these 
parameters will then be chosen so that a certain functional takes its maximum or minimum 
value. The most familiar form of the functional is given by [ l ]  

F ( + )  = 2(+. X) - (+? fi+). (6) 

The exact solution q5 of the Boltzmann equation maximizes F with a value F ( 4 )  = (9, X). 
If we further assume that + depends on one variational parameter (+ a+) and take 
8 F l a a  = 0, then 

F(+) = (+> -w2/(+, &). (7) 

This is identical with the expression originally used by Ziman [2]. Ziman used a trial 
function of the form 

$” = U. A U = - V T / T .  (8) 
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Also, the phonon thermal conductivity is given by [lS] 
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where NO is the number of unit cells in the crystal and SI is the volume of a unit cell. I t  is 
therefore clear that the two identical maximum values of the two functionals defined by (6) 
and (7) that result at + = 4 are directly proportional to the thermal conductivity. Thus for 
any trial function +, the functional F(+) determines a lower bound K<($)  on the thermal 
conductivity, where 

The lower bound obtained by using the variational trial function defined by (8) and the 
functional (7) is usually called the Ziman limit. 

The results of the ordinary variational principle discussed above have been improved 
along the following two directions: 

( i )  More general variational trial functions than the one given in (8) were used. Hamilton 
and Parrott [3] chose l/ry in the form of a power series in k as 

Here a: are the variational parameters, r- is the highest power in the series and ko is the 
radius of the Debye sphere. 

(ii) The complementary variational principle was utilized. This method yields a sequence 
of lower bounds as well as a sequence of upper bounds on the phonon thermal conductivity. 
According to Jensen et al [6], Benin [7], Srivastava [8] and Mikhail [I21 the sequence of 
lower bounds is given by 

where 

Also, the sequence of upper bounds is given by 

where 
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In the two sets of equations i is the identity operator, j and i are linear operators, 
positive semidefinite and symmetric with respect to the inner product defined by (44, 
and J possesses an inverse. Also, according to [12] thc scqucncc of lower bounds will 
always converge to the exact limit when m 4 00, while the sequence of ,upper bounds 
converges subject to the condition that the eigenvalues of the operator f - ' L  exist within 
the interval (0, 1) or alternatively the eigenvalues of k' fi exist within (I, 2) .  The operators 
j and i can be chosen arbitrarily subject to these restrictions, so that (IZc) is satisfied for 
the sequence of lower bounds and (13c) is satisfied for the sequence of the upper bounds. 
Moreover, if + depends on one variational parameter, then 

x ; O ,  +) = ( X ,  A-I(i - P ) X )  + (+, P X ) * / ( + ,  /PA+) (144 

X,'(S, +) = ( X ,  fi-yi+ ' i")X)  - (+, i"X)2/(+, PJfi+). ~ 4 b )  

In all previous work the above two approaches were not employed together. The 
ordinary variational method was used with a trial function of the form (11) [3], while the 
first modified bounds were dealt with by using the simpler form (8) [9,10, 121, which is 
only valid when normal processes dominate the phonon scattering mechanism. The main 
motivation of the present work is to consider the first modified bounds retrieved from the 
complementary variational principle by using the more general trial Function (1 1). 

3. First modified bounds 

The first modified lower and upper bounds are given by equations (12a) and (13a) with 
m = 1. x; and x,' are defined by (144 b) when the trial function depends on one variational 
parameter (equation (S)), while they are defined by (12b) and (13b) when the trial function 
depends on more than one variational parameter (equation (1 1)). The latter case is the case 
considered here, and thus 

x : Q ,  $1 = 2(+, (i - f i P ) X )  - (+, (i- f ? F ) A + )  + ( X ,  P X )  ( 1 5 4  

x ; ( j ,  +) = -2(+, (fi? - i ) X )  + (+,(A? - i)fi+) + ( X ,  FX). (156) 

The decomposition of fi in (15b) differs from that in (15a) and accordingly the two equations 
are not identical. In this section we consider some general relations that do not depend on 
the explicit form of fi and f. They will also be proved for a more general trial function 
than the one given in (11). The trial function will be taken in the form 

where (0, 
quantities that depend on + in (154 6 )  can then be expressed as 

I&)) is the basis of expansion and +" = (@,,k @",for a fixed U). The 

(+ ,x)  = Ca:[e., x,] (+, fii-lx) = CU:[O,, ( f i . f - l ~ ) c ~  
7'7 l(i 
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where 
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CY and 
All the vector quantities with subscript U are defined in the same way as $,,. Also, the 
operator fine, is related to the original collision operator fi by 

are two elements of the Hilbert space of all functions of I C ,  and Hnn,kkr = H"",. 

It can Further be shown that 

[a. k""@ = [fi","CY, PI. 
The calculations in the rest of this section will be confined to the first modified lower bound. 
The final analogous results of the first upper bound will be given subsequently. 

The best set of parameters U: (r = 1,2, . . . , r-) is the one that maximizes K;(P,  +). 
They are thus inferred by taking ax;/aa; = 0 and accordingly determined from 

The first modified lower bound on the thermal conductivity is now given by (12~) 
and (24) with the values of the adjustable parameters U: being determined from (21). As 
regards the first modified upper bound, it can be shown that the set OF adjustable parameters 
{U:] that minimizes ~;(j,$) and the minimum value of K;(J,$) are determined from 
equations similar to (Zl), (22) and (24). The results would preferably be expressed in terms 
of ( H j - '  - f) instead of (f - fii-'). We now proceed to consider the following three 
points: 
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(i) In order to emphasize further that the first modified lower hound determined in this 
way takes its maximum value, we consider another trial function $' that can be expanded 
in terms of the basis {Or) as 

It can then be shown by multiplying (23a) by a: and summing over r, U that 

(+', (i - A F ) X }  = (+', (i - ' H P ) H + } .  (26) 

Consequently 

X 3 . t  +) - x ; ( i  +') = (+> HI+) - 2 w .  &I+) + (+', HI+') (27) 
..* 

where 8, = ( I  - HJ-')I? and x;( . f ,  +') is defined from (15a) after replacing + hy +' 
while xT(.?, $) is defined directly from (24). Also, it was readily shown r6.121 that the 
operator & is positive semidefinite and symmetric. This, in turn, leads to the Cauchy- 
Schwarz inequality 

(+'> f i l + )  < I(+'? Hl$)l < ((+, f i I+)(+ ' ,  HI+'))L'z (28) 

which implies that the right-hand side of (27) is positive and accordingly 

x ; O ,  +) > X X t  $7 (29) 

for any +'. This confirms that the trial function + defined by (16) and (21) indeed maximizes 
K T ( j 3  @). 

(ii) Another important point that is worth investigating is how to select .?. The form 
of .? depends on the way in which fi is decomposed into the form (12c). As has been 
pointed out previously, the operator k can he decomposed in this form in many ways, and 
it is clearly desirable to present a method of selecting the best of these ways. Srivastava 
[SI used a semi-rigorous argument to choose one decomposition in preference to others. 
Mikhail [I21 presented a more accurate method. The two treatments, however, were carried 
out for the simple case in which + depends on one variational parameter. In the following 
it will be shown that Mikhail's procedure can be generalized and his result will remain 
valid in the present case in which + depends on a series of variational parameters. For this 
purpose we consider the following two decompositions: 

- -  - *  

H = J - L  and k=r--h (30) 

so that the operators ? and 
second decomposition and for a variational trial function 

possess the same properties as j and i respectively. For the 

the first modified lower bound is given by 
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Here x;(?, E )  takes the same form as ( 1 5 ~ )  but with j and $ being replaced respectively 
by ? and 5. Also, the adjustable parameters b," have to be chosen so that E maximizes 
K;(? .  E ) .  Hence, the analogous equations to (23b) and (24) take the form 

I F  I Mikhail and N E Hassanen 

(5, (i - H?-')x) = (E ,  (i - HI-)&) (3249 

and 

x; ( i . ,  E )  = (5, (i- H?-l)Hg) + (X, PIX). (32b) 

It also follows from (29) that 

x x t  44 > x ; ( L  0 ( 3 3 4  

which, in turn, implies that 

x : ( j ,  $) > 2(E, (i - H.F)X) - ( E ,  (i - B?-I)H<) + (X, FX). (33b) 

We now introduce the operator 2 = .?-I - ?-I and make use of (32a, b) to express (33b) 
in the form 

x ; O ,  dJ) > x3?, E )  + (('e& ?HE) - 2(HE,  ?X) + (X, iX)I. (34) 

The operator S is symmetric and we shall further assume that it is positive semidefinite. 
Accordingly, the following CauchySchwarz inequality holds: 

(HE, iX) 6 I(&, ?X)l 6 ((Fit, SHE)(X, SX))I'2. (35) 

Hence the quantity between the curly brackets {. . .) on the right-hand side of (34) is positive 
and thus 

x : O ,  @) > x ; @ ,  E ) .  (36) 

The above result is obtained subject to the condition that .? is positive semidefinite. It can, 
therefore, be concluded that the first decomposition of H in (30) gives rise to a better lower 
bound on K than the second decomposition if j-' - ?-I is positive semidefinite. This 
generalizes the result of Mikhail 1121, which was obtained for the special case of a trial 
function that depends on one variational parameter. 

It can be shown in a similar manner that the decpmpositio? 'e = j + 2 gives a bekter 
first modified upper bound than the decomposition H = f + A if the operator .r-' - J-' 
is positive semidefinite. 

(iii) The calculation of the first modified lower bound from equation (24) necessitates that 
one has to solve equation (21) numerically for a certain number of variational parameters 
a: (r = 1,2, . . . , r,-; U = t ,  2 )  to find their values. In other words it is required to 
evaluate numerically the reciprocal of the matrix (G$] (r, r' = 1,2, . . . , r-; U, U' = t ,  E )  
for a given rmm. However, in the simplest case of r,, = 1 we only have two variational 
parameters (at, uf)  and the solution of equation (21) may be obtained analytically. The 
corresponding expression for x; can be retrieved from equation (24). It takes the form 

x:(.f, $, rmax = 1) = d-l[Gff(Zf)Z - 2G;:ZfZf + Gf:(Zf)'] + (X, k ' X )  (37d  
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In the case of one variational parameter x; is given by ( 1 4 ~ )  with m = 1 and ?,b E 81. 
Consequently 

The matrix (G;;'] (r, r' = 1.2, . . . , r-; U, U' = t ,  e )  is positive definite for any value 
of r,-,-a factthat follows directly from the positive semidefinite property of the operator 
61 = (I - H J - ' ) f i  and from the relation 

which is valid for any + that can be expanded in the form (16). It  thus^ follows that the 
right-hand side of (39) is positive and accordingly 

x ; O ,  +, 7,- = 1) > x,~.f, ?,b = el). (41) 

This indicates that IC:(?, ?,b. r,, = 1) yields better values for the thermal conductivity than 
x:(.f, + = @I), which is expected since the~fonner depends on two variational parameters 
while the latter depends on one variational parameter only. One should further expect that 
the increase of r,,, leads to a continual improvement in the calculated values of the thermal 
conductivity and that K ; ( J ,  +) approaches the exact solution when r,, -+ CO. In order to 
confirm this we first note from (21), (24) and (40) that 

x?(.f, +) = ZTG-'Z + (X, k l X )  (42) 

where G and Z refer respectively to the matrix [G:;') (r, r' = 1.2, . . . , r-; U, U' = t ,  e )  
and the column vector (ZF) (r = 1,2, . . . , rmM; U = t ,  e ) ,  while the superscript T refers 
to the transpose. We then utilize the following formula, which depends on the partition of 
matrices [16,17]: 

(43) (ZTG-'Z)r,nax=v+~ = (ZTG-lZ)rnss=.< + YTf?vW 

(44) 
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The fact that G is positive definite implies that G-’ and consequently Cl9 are also positive 
definite. As a result the second term on the right-hand side of (43) is always positive and 
hence 
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(ZTG-’Z),,,+~ z (ZTG-’Z)r_,. (45) 

The last relation together with (42) and (12a) imply that the sequence ( ~ ; ( ? , + ) , r -  = 
1,2,3, . . .) increases monotonically as r,, increases. It, therefore, approaches the exact 
analytical thermal conductivity from below and converges when r,, + CO. The h i t  may, 
however, differ from the exact value. 

A similar procedure shows that the sequence ( ~ r ( . ? , + ) , r ~ ~  = 1,2,3, ...) is 
monotonically decreasing and accordingly it converges. The limit is above or equal to 
the exact value. 

4. Three-phonon interactions 

The analysis presented in the previous two sections depends mainly on the form of the 
phonon collision operator fi and on the way in which fi is decomposed into the forms (12c) 
and (13~). In this section we consider that the phonon scattering mechanism is only due to 
three-phonon normal and Umklapp interactions. The other types of phonon interactions will 
be dealt with in the following section. The collision operator of three-phonon interactions 
can be expressed as 

(46) 

where 

The sum E, is taken over all the relevant reciprocal lattice vectors g including g = 0 
(normal processes) 

e; = (P:r)N”=& P;; = w:,N~N~,(~ + N”,,) (48) 

and P;:, and W;:, are the net and transition probabilities per unit time of the process 
U + U’ + U”. If the elastic continuum model is considered, then W,$ is given by 11.51 

Here A,,,,t, is a tensor that measures the strength of three-phonon interactions and is 
symmetric in U, U’ and U”. Also, following Parrott 1131 and Hamilton and Parrott [3], 
the Debye isotropic approximation will be used. Thus for the processes U + U‘ + U” and 
U +, U’ + U“ involved in the first and second parts of (46) we have respectively 

x , x ’ , x ” < l  # - € ) < I Z + Z ‘ l < $ ( 3 - € )  1 

I ” = [ ~ - ( ~ - E ) / I I + z ’ [ J ( z + z ’ )  x ” = 1 - ~ + 6 [ ~ + 1 ’ [  (50a) 

g = [(I - € ) k D / l Z  + dl1(1 +z’) -(I - E)k&”* 
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and 

x , x ' , x " < l  $ ( l - E )  c lx -x ' l c$ (3 -€ )  
(50.6 

where U is a specific mode, E = +l and -1 for normal and Umklapp processes, respectively, 
and the form of g used in (506) was originally introduced by Mikhail and Madkour [14]. 

As regards the decomposition of k we follow Benin [7], Srivastava [9] and Mikhail 
[ 121 and take for the sequence of lower bounds 

X" = x - X' - (1 - c)k* g = -(I - c)k&* 

.? = pf where p = 3(Fv)mx (514 

and 

The above result was obtained by taking 6 to be greater than or equal to the maximum 
eigenvalue of k and applying the Perron-Frobenius theorem [18]. The analogous analysis 
for the sequence of upper bounds necessitates that one has to find a positive scalar quantity 
p'  that is less than the minimum eigenvalue of k. Srivastava [9,19,20] presented an 
argument for the existence of p. On the other hand, Jackle [21] showed that the spectrum 
of fi extends continuously to zero and accordingly no gap exists within which p' may be 
chosen. In view of this, we preferred to confine ourselves in the present paper to the case 
of the first modified lower bound and to leave out of consideration the calculation of the 
first upper bound. 

The variational trial function @ will be taken in the power-series form (11). This is 
equivalent to taking 8,k = -u(cos,y)x' in (16), where x is the angle between V T  and k. 
The quantities considered in equation (17) would then take the forin 

where 

HZ' = ~ ( C O S X  COS x')x~x'~'(H~~)~~, 
22' 

(53) 
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The quantities needed for the calculation of the first modified lower bound are thus Xf, Y:. 
H?', QFV and S:: in addition to the quantity rv ,  which determines p, and the quantity 

I F  I Mikhail and N E Hassanen 

which is related to the last term in (1%) by 

Some of these quantities have been considered in earlier work: Xf and H;' in [3] and ru 
in [9,12,14].  The other quantities can be dealt with by using similar approaches. The final 
results are given by 

1 r+r' 0 0 0 0 r+r' 0 r+r' 0 
H $ =  ,&,, J I  z o o + JI  o o 2 + J I  0 2 0 

" W " W  " C Y '  R 0's 

I 0 ,' 0 J' r 

n 0" OU' 0" n"' " 

,+,<,,, (i [ " " I  ",,, 

"l, " "1 

J I  I o I + J1 o I I - JI I I o 
(55) 

s' O n" O ' I  c7 

r O  0 o r 0  

J Z I  o o + J Z O  I o - J Z O  o I 
n" n .' 

where 

q:,, = C [xr'8vo,(rn,o~,++c,, (1) + r,,,,,,,,.) (2) 

~ b'b' 

(56) - (6,.,.r, (1) ,nll,_n,, + s,,.,~~~,,,,,,~,, (2) - s,.,,.r,,,,,,,,,)i. (3) 

The coefficients that appear on the right-hand sides of equations (55) and (56) are given in 
the appendix. 

The best set of adjustable parameters can be calculated from equation (21) and the 
corresponding first modified lower bound can consequently be obtained from equations 
( Q ) ,  (24) and (42). The analogous expressions after including the effect of other phonon 
processes will be given in the following section. 



Modified bounds on phonon thermal conductiviry 243 

5. Other types of phonon interactions 

In section 4 the calculations have been restricted to the case of three-phonon normal and 
Umklapp interactions. In the present section the effect of other types of phonon interactions, 
which play a significant role at low and intermediate temperatures, will be included. These 
types are boundary scattering, dislocation scattering and interactions with mass defects. The 
collision operator k can be expressed in the form 

- -  
H = H3p + & (57) 

where is the part of a that represents phonon interactions other than normal and 
Umklapp processes. The simplest form of & is that obtained by using the relaxation-time 
approximation, according to which 

(58) -I - -I (fid~)~ = r,,+, rvs = g d  5, - r”b + r”;l + 7;;. 
Here rub, rvd and r,, are the relaxation times of boundary, dislocation and mass-defect 
scattering, which are given by [22-241 

- 4  - 4 4  
7”;’ = v,/L r;d’ = &T r$ = AU, = ~ Y Y ~ T  

= C2f/(4nv3) iU = ( k ~ f i ) ~ A  (59) 

3111’ = 2Jv: + 1/u: yv =hv,k/ksT.  

L is the specimen dimension, and $ and f are the dislocation and mass-defect parameters. 
Equations (57) and (58) together with (4b) yield 

H~~ = ( H ~ ~ ) ~ ~ ~  + rus&uuf. (60) 

As regards mass defects, they can be represented more accurately by the complete form 
of the collision operator, which is given by 

where 

and 

Here e, is the polarization vector corresponding to the mode U = (U, k )  and rum is the 
diagonal part of I?,,,, which is related to 1;; by r,, = sur;;. It is readily shown that this 
relation gives 

(z;’),~ = i n F k o ~ ~ ( 2  + c ’ ) x ~  (62d 
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and 
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(T;L = firFkDvr{i + 2c-3[1 - e ( x  - c)~}x4 (62b) 

where c = U , / Q  and S ( x  - c) is the step function. If the term e ( x  - c) is neglected in 
(62b), then (62a) and (62b) can be combined to give the same expression for rvm as that 
given in equation (59). The neglect of the term S ( x  - c)  is justified for T << 8, where 6, 
is the Debye temperature. 

The most direct decompositions of the operator k, which are analogous to (51a), yield 
the following expressions for the operator j: 

(.f+)" = ~ ~ i * ~  i = 0, I ,  2 for any + ( 6 3 4  

where 

and 

Other possible decompositions are discarded according to the findings of section 3. In the 
decompositions i = 1,2, I?$ is defined from equations (58)-(60). For i = 1 the Perron- 
Frobenius theorem is applied to the total operator k, while for i = 2 the theorem is applied 
to k33p. The decomposition i = 0 is obtained by applying the Perron-Frobenius theorem to 
the total operator k with & defined by (61a, b)  and with #E = -#", where ? = (U, i), 

= (kl, k2.43) and k3 is the component of k along VT . rum and r;A are accordingly 
defined from (624 b). 

It was further found that all the terms that arise from the off-diagonal part of fi,,, will 
vanish identically. Consequently, for the three decompositions presented by (63a) we have 
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The two coefficients JZ and FT'""" (equations (55) and (Alu,b)) wijl accordingly be 
replaced by .I2 and F~""'"" due to the replacement of Yv. Y",, Y,P by Yui, YUpi, YVq.  Also, 

Moreover, the expression for (U$)i can be obtained from the expression for HZ'? 
(equation (55)) by replacing the coefficient JI by the coefficient Z;, which is given in 
the appendix (equation (A5)). 

The best set of adjustable parameters and the first modified lower bound are accordingly 
determined by 

where 

(@,4')i = (l/yNo)(H$ +E::' - y-'[(S:$)i + (U7')i  + (D.7')iI). 

The general expressions for = I. k (one variational parameter) can be retrieved 
from (12~) and (38) with e l k  = -uxcos x. It can be shown after some manipulation that 
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where 
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The expressions for M ~ ~ ~ , , + m , ,  and MF.,.,,,, were obtained in Mikhail [12]. They are given 
here in the appendix together with the expressions for the other coefficients involved in 
equation (69). 

6. Experimental applications 

In the previous two sections the basic equations and formulae needed for the calculation 
of the first modified lower bound on the phonon thermal conductivity have been derived. 
The variational trial function depended on a series of variational parameters. The simple 
case of one variational parameter has been deduced as a special result. In this section 
the expressions obtained are used to evaluate the thermal conductivity of germanium and 
lithium fluoride. The input data needed for the calculations are taken from Hamilton and 
Parrott [3], Srivastava [25] and table 1 of Mikhail and Madkour [14]. The corresponding 
experimental results were given in Geballe and Hull 1261 for Ge and in Berman and Brock 
[27] for LiF. 

6. I .  Details of numerical calculations 

The integrals involved in the calculations are evaluated numerically to a sufficiently 
high accuracy by using the Gaussian quadrature method with 24 pivots. The values of 
the variational parameters a: (r = 1 , 2 , .  . . , rm& U = t ,  e )  are obtained by inverting 
numerically the matrix (G::’]. The value of r,, is allowed to vary from 1 to 7. The 
variational procedure is therefore carried out in successive steps. In each step rmx is 
increased by one and thus two additional variational parameters are included (a = t ,  e).  
The calculations are terminated if either the difference between the values of the thermal 
conductivity calculated in two successive steps is less than 1% or r,, exceeds 7. 

6.2. Results and discussion 

The first modified lower bound on the thermal conductivity for Ge and LiF has been 
calculated numerically from equation (67b). In the special case of one variational parameter 
(+” = u.IC), equation (69) has been used instead. We now proceed to consider the following 
four points: 

(i) In Srivastava [9] the first modified lower bound on the thermal conductivity of Ge 
was calculated by using the simple trial function +” = u .  IC. Srivastava [9] considered only 
three-phonon interactions and used a very simple approximate form for the tensor 
He further performed the calculations in the high temperature range (T > 300 K) where the 
leading terms only were retained. Besides, the areas of integrations for the three-phonon 
processes v ++ U‘ + v” (specified by (50b)) used in [9] were later amended in [14]. Also, 
the reciprocal lattice vector for the Umklapp processes of this type was taken in [9] in a 
different form from that given in (506). It was argued in [I41 that the form given in (50b) is 
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a more reasonable choice. In view of these considerations we used equation (69) to calculate 
K;(P, @” = U .  k) for Ge when three-phonon interactions only are taken into consideration. 
The form of the reciprocal lattice vector given in (50b) is thus used instead of the form used 
in [9]. ‘The general expressions for A,,,,,, together with the correct areas of integrations were 
also utilized. We started the calculations at T = 50 K, around which normal processes~start 
to dominate the phonon scattering mechanism and the solution @” = U i k becomes valid. 
The calculations were extended to the high temperature range to compare the results with 
those of Srivastava [9]. The results obtained in this range are given in table 1 together with 
the corresponding results from [9]. The present modifications have improved the results 
since the value of K; has been increased for T = 300-900 K. It has been increased by a 
Factor of 3.2 at T = 300 K. The factor decreases with the increase of temperature until it 
became 2.83 at T = 900 K. 

Table 1. Comparison behueen the valuer of E;@. 

and those obtained in Srivastava [9]. 
= U .  k )  obtained in the present work 

T (K) Present work Srivstava [91 

300 1.15 0.355 
500 0.692 0.231 
700 0.496 0.171 
900 0.386 0.136 

(ii) The results of the first modified lower bound obtained from equation (67b) by using 
a power-series trial function are displayed in figure 1 for the natural and enriched specimens 
of Ge of Geballe and Hull [26] and in figure 2 for two of the specimens of LiF (labelled 
by 6 and 8 in table 1 of Berman and Brock [271). The corresponding results obtained by 
considering normal and Umklapp processes alone are also given For the two materials in 
the same figures. The experimental data of [26] for Ge are shown in figure 1 while the 
measurements of [27] for LiF are presented in figure 2. The theoretical results for the 
two specimens of Ge were calculated by using the three forms of the operator .f (of the 
quantities Jut ,  Bi, i = 0, 1.2) given in (63). The differences between the three sets of results 
were found to be insignificant within the accuracy of the computations. For the enriched 
specimen the differences never exceed 0.4%. Also, an excellent convergence was found 
over the whole temperature range for the three sets of results as r,, increases. As regards 
the natural specimen, we have generally used the results of i = 0 in which the exact collision 
operator of mass defects is considered and accordingly the mass-defect relaxation time is 
defined by ( 6 2 ~ .  b). However, for this specimen the convergence was found to be weak over 
the temperature range T = 16-40 K when r,, increases from 5 to 7. Over this temperature 
range we compared the results of the three sets to choose the best value (the dashed-double 
dotted part of the lower full curve in figure 1). We believe that the convergence For this 
specimen over this temperature range may be improved if the calculations are carried out on 
a computer of better accuracy. For the two specimens of LiF the results were obtained by 
using the expressions for i = 0 in (63) and were found to converge quite reasonably over 
the whole temperature range as r- increases. Also, an excellent convergence was found 
for both Ge and LiF at all temperatures in the case when three-phonon normal and Umklapp 
processes occur alone. Moreover, the agreement between the theoretical and experimental 
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Figure 1. Graph of thermal conductivity against temperature for Ge. The lower (natural 
specimen) and upper (enriched specimen) full curves and the dashed-double dotted part of 
the lower curve refer to the results obtained for the first modified lower bound by using a 
power-series trial function (equation (676)). The corresponding experimental results of Geballe 
and Hull [26] %e represented by the full circles and the broken curve (natural specimen) and by 
the open circles (enriched specimen). The dashed-dotted curve represents the results calculated 
with a power-series trial function when three-phonon interactions occur alone. 

results is quite reasonable for both materials bearing in mind that no fitting parameters are 
used. 

It should, however, be noted that in the case of the enriched specimen and a part of 
the results of the natural specimen of Ge and for the two specimens of LiF the theoretical 
results of the first modified lower bound are greater than the experimental values. The same 
behaviour was also noticed regarding the results obtained from the ordinary variational 
principle for Ge [3]. This may be attributed to the use of the continuum model and the 
neglect of dispersion, which increase the group velocity of acoustic phonons and accordingly 
the calculated heat current and thermal conductivity. Also, the crystals of Ge  and LiF are 
cubic with two atoms per unit cell. The dispersion relation of these materials consists of 
three acoustic as well as three optical branches. In order to counterbalance the neglect of the 
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! I I I I 

10 20 50 100 200 500 

Figure 2. A plot of thermal conductivity versus temperature for LiF. The full cumes refer to the 
results obtained for the first modified lower bound by using a power-series trial function. while 
the broken curves refer to the corresponding experimental values. The specimens are labelled 
by the same numbers as in Berman and Bmck [U]. The dashed-dotted c u ~ e  represents the 
results calculated with a power-series trial function when three-phonon interactions occur alone. 

optical branches, an extended zone scheme has been used for the acoustic branches. This 
overestimates the effect of optical branches since the group velocity is taken throughout to be 
the velocity of sound. Moreover, the isotropic model used for Umklapp processes restricts 
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this type of interaction to be coplanar. The neglect of the three-dimensional nature of 
Umklapp processes may lead to an increase in the calculated values of thermal conductivity. 

(iii) In figure 3, a comparison is made for the enriched specimen of Ge  between 
the results obtained for the first modified lower bound by using the U .  k trial function 
(equation (69)) and by using a power-series trial function (equation (67b)) with r- = 1-6. 
The figure demonstrates further how the results converge and approach the exact value when 
r,,, increases and the number of variational parameters increases accordingly. 
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F i y r e  3. Gnph of the first modified lower bound against temperature for the enriched specimen 
of Ge. The results are obtained by using the 21. k in31 function (equation (69)) and by using a 
power-series trial function (equation (67b)) with r,, = 1-6. 

(iv) In principle, the convergence of the calculations of the first modified lower bound 
(present treatment) must converge much faster than the ordinary lower bound [3] as r,, 
increases. In order to investigate this point, we have calculated the ordinary lower bound 
for Ge and LiF in the case when normal and Umklapp processes exist alone. It was found 
that up to r,, = 4 the first modified lower bound is always higher than the ordinary lower 
bound and is thus nearer to the exact analytical value. The difference decreases as r,, 
increases but the calculations have to be carried out to a very high accuracy to investigate 
whether the two sets converge to the same limit or to different limits. 
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7. Conclusions 

The complementary variational principle has been used successfully to determine the general 
expressions required for the calculation of the first modified lower and upper bounds as well 
as the relations needed to select the best decomposition of the collision operator for each 
type of bound. The present modifications for the calculation of the first modified lower 
bound have considerably improved the results of earlier treatments. The numerical results 
obtained for the phonon thermal conductivity by using this bound and a variational trial 
function that depends on a series of variational parameters showed a good quantitative 
agreement with the experimental data of Ge and LiF. The results showed also a reasonable 
convergence when the number of variational parameters increases. The convergence was 
further proved analytically. 

Appendix. Basic coefficients and integrals 

In this appendix we give the required expressions for the basic coefficients used in sections 4 
and 5. They are all expressed in terms of double integrals over x and x' or single integrals 
over n' for a given n in the interval (0.1). Also, all the integrals depend on the tensor 
A,,,,., which measures the strength of three-phonon interactions. The areas and limits 
of integrations and the expressions for A,,,,,J were given in Hamilton and Panott [3] and 
Srivastava et a1 [28] for the processes U +U' U U" (described by 50a)) and in Mibai l  and 
Madkour [I41 for the processes U +, U' + U" (described by (50b)). 

The coefficients involved in equations (55) and (56) are given by 

j = 1,2 (Ala) 
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where y is defined by equation (64) and 
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= u o / ~ m m  U' = U,. /Uon 35 = I A ~ " . ~ , I  2 -  N , N ~ ( &  - + 1) 

, (ax+a'x'- 1+€)2-X2-xR 
(A4) c ' = c o s e  = ' '" (for the process U + U' cf U") 

2XX'  
2 (ax - @'X')* - X R  - (1~- € ~ -  x) 

b ' (1 -E-x )  
2.' = cos@ = '' ' '  ' '  ' (for the process U Y' + U"). 

Here (e', 4') are the polar and azimuthal angles in the 5' space, where the polar axis is 
taken in the direction of z and thus 8' is the angle between z and z' while @' is measured 
from the plane consisting of z and VT. Also, 7 is the angle between z + z' and VT 
(cos XI' = E cos q).  The dependence of Tm"'"'' on U, U', U" and on x, x' as well as the 

on x, 
dependence of r,,n,+,m,,, (1) rrun,,ri,, (2) on x, E and the dependence of I",,+,., (1) ",,, I,,$,+, (3) ",,, I,, (2) rT,, 

r are dropped for simplicity. 
Also, the coefficient I; needed for the calculation of (U$)j (equation (64)) is given by 

I r' r" 
I I ?'+I I j  ,I m" = - g ~ x " ~ x " + ~ ( a x + a x )  [I -E+E(ffX+a'X')] 

aa' n n' n" 

Finally, the coefficients involved in equations (69) and (70) can be expressed as 

and 

The subscript U indicates that for three-phonon interactions the contribution due to normal 
processes vanishes and Umkiapp processes only are considered. 
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